Nathan Skolski

Email: nathanskolski@okmain.cms.ok.ubc.ca


 

Understanding how gut mucus packages microbiota could lead to new ways of disease detection 

Gut mucus. It may not be everyone’s favourite subject, but new research from UBC Okanagan has found it’s more complex and intimately linked to the body’s microbiota than previously thought.

Microbiota is a physiological force made up of microbes—mostly bacteria, fungi and viruses. While it often does good, like extracting energy from diet, warding off pathogens and promoting a healthy immune system, if it’s off-balance, it can also work against the body to promote illnesses like cancer, inflammation and obesity.

Working with colleagues at Oklahoma Medical Research Foundation, UBCO researchers recently published a study in Science examining this new-found relationship, why it matters, and how it may lead to less-invasive disease screening.

Kirk Bergstrom is an assistant professor of biology in the Irving K. Barber Faculty of Science and co-lead author of the study.

Let’s talk mucus. What are the misconceptions about it and how is it useful for our bodies?

I think people associate mucus with being sticky, gooey and kind of gross—but in the gut, it’s actually really important physiologically, and can protect from microbiota-driven diseases like cancer and inflammatory bowel disease.

There’s still a lot we don’t know about it, and that’s because it’s really complicated, decorated with thousands of sugar structures we call O-glycans that make up most of the molecule. It’s also hard to access so we could never get a lot of it to study.

Your study provides some new insight into how the mucus system works. Can you elaborate on this?

It was long-thought that mucus was continually produced along the entire length of the gut, especially in the colon, and that it stuck to the tissue to form a barrier to these microbes. It was thought to be immobile and have an overall similar chemical composition throughout.

Our study essentially showed the opposite. We found that the mucus does not attach to tissue, it attaches to the microbiota within the fecal mass, forming a seal around the community as it moves through the colon.  It’s also made up of two chemical sugar ‘flavours’—a dominant one is produced way up in the first part of the colon and the other, previously undiscovered kind, is formed in the lower colon.

What’s also really interesting is that the microbes themselves promote their own sealing by boosting production of the mucus in the first part of the colon. The sugars on this mucus then influence the types of microbes that thrive, the molecules they produce and where they position themselves in the gut.  All this, we believe, promotes their good functions, for example, by preventing unwanted inflammation.

How do your study results help advance knowledge in the field, and what impact could they have for the general public? 

Discovering this connection between mucus, its sugars, and microbes really changes how we view our microbial friends and how they live, move and behave in the gut. This has implications for microbial transmission—once they are packaged up, how does this influence where they ultimately go? How do pathogens escape this sealing and cause disease?

Another really exciting opportunity is that since the mucus system is attached to the fecal mass, this opens the door to easier non-invasive ways of accessing mucus, and that’s going to lead to a better understanding of its chemistry and biology. In line with this, we envision new opportunities for non-invasive biomarker discovery for chronic diseases like inflammatory bowel disease and colon cancer, since changes in the mucus sugars can be early warning signs for disease, we can potentially easily screen from these markers without the need for uncomfortable biopsies and endoscopies.

Where do you go from here? 

These were pre-clinical studies, meaning they were conducted using mouse models, which are essential biologic tools for health researchers. However, our next step is to take these results and replicate them in humans. Actually, our study already shows evidence that a similar mucus formation mechanism is present in humans, but we want to dig deeper to see if microbes influence this as we move forward.

We also want to begin using this new understanding and way of analyzing mucus in fecal samples to explore how things like diet, antibiotics, lifestyle or disease impact the structure and composition of the mucus.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

Bergstrom would like to thank his mentor Lijun Xia, and colleagues Xindi Shan, Wesley Zandberg, Deanna Gibson and Sepideh Pakpour for their contributions to this research.

To find out more, visit: ok.ubc.ca

Telhiqox, in the traditional territories of the Tŝilhqot'in people. Image courtesy Kevin Hanna.

Agreements to strengthen collaborative research partnerships with UBC’s Centre for Environmental Assessment Research

On August 11, a memorandum of understanding (MOU) and an Indigenous Knowledge Protocol Agreement (IK Protocol) were signed by the Tŝilhqot’in Nation and the University of British Columbia. These agreements were led by Chief Russell Myers Ross, Vice Chair of the Tŝilhqot’in National Government (TNG) and Prof. Helen Burt, Associate Vice-President, Research and Innovation at UBC.

The MOU and IK Protocol are a first between UBC and the Tŝilhqot’in Nation and set a path forward for collaboration, cooperation and partnership grounded in respect for the Indigenous Rights of the Tŝilhqot’in Nation.

“The relationship with Kevin Hanna and his team at UBC has worked well, from the original conversations about cumulative effects to working with the Tŝilhqot'in Nation lands department to conduct a variety of useful projects to fill the gaps of understanding the Tŝilhqot'in territory,” says Chief Myers Ross. “The MOU and IK Protocol collectively represent one of many projects from UBC, collaborating with the support of the Indigenous Research Support Initiative (IRSI), to further our research priorities. IRSI has ensured continuity and governance support in fostering the relationship between UBC and the Tŝilhqot'in Nation.”

A key feature of the MOU and IK Protocol is to ensure that research is undertaken with cultural safety, an approach that recognizes and addresses systemic power imbalances and fosters a culture free of racism and discrimination, thus creating a safe arena for Indigenous partners. In addition, the agreements recognize the intellectual property rights of the Tŝilhqot’in knowledge and solidify the Nation’s data ownership and control. Further, the MOU establishes a foundation for future research collaborations that incorporate Tŝilhqot’in knowledge, community needs and sustainable environmental practices and opportunities within Tŝilhqot’in Nen (lands).

UBC and TNG have multiple research collaborations underway, including a number of projects with the Centre for Environmental Assessment Research (CEAR), which is a research centre based at the University of British Columbia’s Okanagan Campus and led by Director, Dr. Kevin Hanna. Current CEAR-TNG research collaborations include Indigenous-led impact assessment, mapping and visualization of landscape change, new approaches and technologies for wildlife monitoring, and water governance.

“This MOU represents an important step forward in the relationship between UBC and the Tŝilhqot’in National Government,” says Dr. Hanna. “We have a unique opportunity to learn from the knowledge and experience of our Tŝilhqot’in colleagues, and to connect the resources and expertise of UBC to a range of historic and emerging environmental and natural resource management challenges in Tŝilhqot’in territory. There is a lot of innovative work we are already doing -- in impact assessment and geospatial science, and more is being planned. But this is very much about connecting different forms of knowledge, creating new collaborative approaches to doing research, and ensuring that the outcomes have value to Tŝilhqot’in communities.”

Background

  • The Tŝilhqot’in Nation is a Dene-speaking Nation comprised of six First Nation communities; Xeni Gwet’in (Nemiah Valley), Tl’etinqox (Anaham), Tl’esqox (Toosey), Yunesit’in (Stone), ʔEsdilagh (Alexandria) and Tsideldel (Redstone). The Tŝilhqot’in Nation is located in central British Columbia and is the first in Canada’s history to secure a court declaration of Aboriginal Title to a portion of their homelands.
  • The University of British Columbia is a global centre for research and teaching, consistently ranked among the top 20 public universities in the world. Since 1915, UBC’s entrepreneurial spirit has embraced innovation and challenged the status quo. UBC encourages its students, staff and faculty to challenge convention, lead discovery and explore new ways of learning. At UBC, bold thinking is given a place to develop into ideas that can change the world.
  • Located on Musqueam territory at UBC’s Point Grey, Vancouver campus, the Indigenous Research Support Initiative (IRSI) at UBC provides professional research support and services to Indigenous communities and university researchers in order that they may undertake collaborative projects based on community-led interests, reciprocal relationships, and principles of mutual accountability and understanding.
  • Located in Syilx Okanagan Nation territory at UBC’s Okanagan campus, the Centre for Environmental Assessment Research (CEAR) at UBC supports research about environmental assessment (EA) processes and methods and helps integrate this information into practice. Research conducted and supported by CEAR contributes to resource development by furthering knowledge about the role that EA plays in helping to advance natural resource management practices that benefit Canadians.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

Master of Science Biology student Portiaa McGonigal gives her winning 3MT presentation in front of a capacity crowd.

Graduate students compete for their share of $6,000

A compelling presentation of a topic all too familiar among Okanagan wine producers clinched the winning spot at last night’s seventh annual UBC Okanagan Three Minute Thesis (3MT) competition.

Portiaa McGonigal, a master of science biology student, captivated judges and audience members alike with her presentation, “Crown Gall Disease of Grapevine: Investigating Management Strategies and Biological Controls.” She took home first place and the top prize of $3,000.

“It feels so great to have won this amazing competition alongside so many brilliant minds,” says McGonical, a graduate student in the Irving K. Barber School of Arts and Sciences. “I was nervous, but the desire to communicate my research was greater than the nerves. It was so incredible to have the chance to share my research with people outside my field and broader community.”

Kelowna’s Innovation Centre was filled to capacity for the event, which saw 11 graduate students explain years of research in just three minutes to a diverse audience.

Interdisciplinary Studies student Meg Yamamoto was awarded second place and $2,000 for her presentation, “Documenting Experiential and Artistic Interpretations for a Local Flora and Fauna Online Archive.”

Abisola Kehinde, a master’s student in biochemistry and molecular biology, was the crowd favourite taking home $1,000 for the alumni UBC People’s Choice Award for her presentation titled, “Developing an Infant Formula from Breadfruit.”

“Getting the alumni UBC People’s Choice Award means so much to me. It’s so encouraging that I was able to communicate my research and people enjoyed it,” says Kehinde. “3MT is simply amazing. It taught me how to slow down and communicate my research effectively.”

As the winner of the 3MT final, McGonigal will travel to this year’s Western Regional 3MT Competition hosted by the University of Alberta on April 21.

From there, the top three presenters will win an opportunity to compete in the national competition, hosted by the Canadian Association of Graduate Studies.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

UBC Okanagan researcher argues against relying only on charismatic species the like grizzly bear for gauging habitat health.

Menagerie of several species to monitor habitat health offers better conservation outcomes

With habitat loss threatening the extinction of an ever-growing number of species around the world, many wildlife advocates and conservation professionals rely on the proverbial ‘canary in the coal mine’—monitoring and protecting a single representative species—to maintain healthy wildlife biodiversity.

But new research from UBC’s Okanagan campus suggests that habitats are better served if conservation efforts focus on a collection of species rather than a single ‘canary.’

“Efforts around the world are going into countering a decline in biodiversity,” says Adam Ford, study author and Canada Research Chair in Wildlife Restoration Ecology at UBC Okanagan. “While we would love to be able to protect all habitats for all species, organizations tend to focus their efforts on a few species and not everyone shares the same priorities.”

That, he says, is where the idea of surrogate species—or the canary in the coal mine—comes into play. But it’s not without its drawbacks.

“The problem with surrogate species is that people rarely agree on which species that should be,” says Ford. “And there is a tendency to favour charismatic species like grizzly bears and wolves, over lesser-known but equally-important species. These preferences are deeply rooted in cultural norms.”

To address that imbalance in selecting surrogate species, Ford and his team began looking at how to group species together to present a more objective and representative sample of the habitats that need protecting.

By combing through a public dataset of over 1,000 species and 64 habitats in British Columbia, they were able to compare the surrogacy value of each species—a numerical score based on the association of two species through their use of shared habitats.

They found that a mixture of five to 10 game and non-game species offered the best value as surrogates for biodiversity conservation.

“We discovered what we called an ‘all-star’ team of species for each of the province’s nine wildlife management units, as well as an all-star team for the province as a whole,” says Sarah Falconer, graduate student at Laurentian University and study co-author. “Our findings suggest that if we commit to preserving these collections of species rather than just the charismatic megafauna, we’re likely to achieve much better conservation outcomes.”

Ford is quick to point out that the mixture of game and non-game species in their all-star teams mean that seemingly disparate groups, ranging from hunters to bird-watchers to hikers, have a vested interest in working together to protect each of their species for the benefit of all.

“Perhaps we should not be focusing on figuring out which species is the best conservation surrogate, but which groups of species bring the most people together to protect the most biodiversity,” he says.

The study was published recently in the Canadian Journal of Zoology with funding from the Canada Foundation for Innovation, the National Sciences and Engineering Research Council and the Canada Research Chairs program.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

Everything that grows in the Okanagan will be impacted by climate change, population growth, consumption, production and changes in land use. Learn more at the Okanagan Research Forum on December 3.

What: Okanagan Research Forum
Who: UBC Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services and UBC Okanagan Institute for Community Engaged Research
When: Monday, December 3 from 8:45 a.m. to 6 p.m.; keynote lecture at noon
Where: Summerhill Pyramid Winery ballroom, 4870 Chute Lake Road, Kelowna

The Okanagan Research Forum invites the community to listen to experts and take part in an open discussion about the future of food production in the Okanagan.

The forum is hosted by UBC Okanagan’s Institute for Biodiversity, Resilience, and Ecosystem Services (BRAES) and the Institute for Community Engaged Research (ICER). It’s a collaboration with partner organizations in an effort to share information and encourage conversation between the community, government and academia.

Presenters from local organizations include Westbank First Nation, the Certified Organic Association, the City of Kelowna, the Central Okanagan Food Policy Council, the B.C. Wildlife Federation, the En’owkin Centre and the Institute for Sustainable Food Systems.

This year’s theme is to explore changes in local food systems and will consider issues such as climate change, access to land, consumption, sustainable food production and future land use.

Four expert panels will discuss agricultural land use, policy, production and consumption. Each panel will be moderated by a UBC Okanagan professor or alumnus, and include farmers, representatives from relevant organizations and other experts. The goal is to explore how 'eating the Okanagan' applies to social, cultural and ecological systems. The day will conclude with a research poster session accompanied by a wine and cheese event.

The afternoon keynote lecture on indigenous plant foods will be presented by Nancy Turner, emeritus professor and ethnobotanist from the University of Victoria. All four panel discussions and the keynote lecture are open to the public. There is a nominal registration fee for the day to cover the cost of food and beverages.

This year’s forum is sponsored by UBC Okanagan’s BRAES, ICER, the Irving K. Barber School of Arts and Sciences, the College of Graduate Studies and the BC Institute of Agrologists.

To register, or get more information, visit okresearchforum.geolive.ca or contact Carolina Restrepo at carolina.restrepo@ubc.ca.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world. For more visit ok.ubc.ca.

Public is invited to discussion about extinction and our peril

What: The great dying: The modern extinction of species and humanity’s peril
Who: Professor Corey Bradshaw, Matthew Flinders Fellow in Global Ecology Flinders University, Australia
When: Tuesday, November 20, from 3:30 to 5 p.m.
Where: Library building, room LIB 305, 3333 University Way, UBC Okanagan

Conservation ecologist Corey Bradshaw, professor at Flinders University, comes from an eclectic background. Growing up as the son of a trapper in Canada, he had the opportunity to form a unique view of the environment. From his childhood experiences, he learned that without intact environmental functions, precious resources quickly degrade or disappear. This appreciation of natural processes later led him into academia and the pursuit of reducing the rate of the extinction crisis.

He is now based at Flinders University in Australia and has a vibrant research lab where he applies quantitative skills to everything from conservation ecology, climate change, energy provision, human population trends, ecosystem services, sustainable agriculture, human health, palaeoecology, carbon-based conservation initiatives and restoration techniques.

This event, sponsored by the UBC Okanagan Institute for Biodiversity, Resilience and Ecosystem Services, is free and open to the public.

For more information contact: carolina.restrepo@ubc.ca

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world. For more visit ok.ubc.ca.